Old clipping leads to discovery of Mayer-Osborn’s elevator in Hoover, Texas

Hoover Populated Place Profile / Gray County, Texas DataStory by Kristen Cart

The Mayer-Osborn Construction Company’s history has been a little difficult to put together because many of the people involved are long gone. My father Jerry Osborn remembers many of the elevators his dad William Osborn built, so I have relied upon these memories quite heavily, filling in the details with newspaper accounts, old photographs, and site visits.

But as Dad’s interests turned to high school girlfriends and football, he paid little attention to his father’s business, and some Mayer-Osborn projects slipped through without his notice. Dad knew nothing about a Mayer-Osborn elevator in the central Texas location of Hoover, eight miles east of Pampa.

Pampa_Daily_News_Sun__Jan_10__1954_Fortunately, the Jan. 10, 1954, Pampa Daily News article announcing its construction survives.

A satellite view shows the stepped headhouse, a Mayer-Osborn trademark, atop the Hoover elevator. The structure appears to be built much like the Mayer-Osborn elevator in McCook, Neb.

The Hoover edifice still stands, and is used for grain storage along a rail line that passes through Pampa to the west.

A history of the town of Hoover may be found here.

 

Minneapolis, Kansas sports a completely unique Tillotson elevator, circa 1947

dsc_0142

Story and photos by Kristen Cart

I knew there was a small Tillotson elevator in Minneapolis, Kan., when I stopped there last weekend on a quick trip to Nebraska from Wichita.

I had a weekend layover and a rental car, and was headed up to see my folks. The town is right where I-135 gives out when driving north from Wichita. I had to get off anyway to continue north, so when I spotted the elevator down by the railroad bridge, I went to check it out.

The Minneapolis elevator was recorded in the concrete elevator specifications of the Tillostson Construction Company. It was one of the handful of Tillotson projects built in Kansas.

dsc_0275

The manhole cover at the base identifies Tillotson Construction of Omaha as builder.

I did not expect what I found. The manhole cover identified the builder, so there was no doubt, but this 1947 creation was unlike any Tillotson elevator I had ever seen.

The elevator was starkly beautiful, balanced, and gracefully situated in its surroundings. Though it was small, its perfect proportions and simplicity made it monumental. A wide-angle, close-quarters view made it look even grander in the photo.

dsc_0211

I have a passion for window panes—the more, the better. They look good in photos, and the Tillotson Company must have agreed—the several windows that let light into the headhouse to illuminate the workspace had a multitude of them.

It may be a nostalgic thing for me—I remember as a little kid seeing painted panes left over from the blackout days of the last great war. It took lots of paint and many, many hours to cover the hundreds of panes in an aircraft hangar or gymnasium, but it was the only way to hide every scrap of light from an anticipated airborne menace. Many years later, after the paint was peeled and broken panes were replaced with unpainted ones, an interesting patchwork remained. That image held fast in my childish memory.

dsc_0218

Though the cooperative was closed for the weekend, blower noise testified to the elevator’s present utility, along with that of its towering neighbors. After the 1947 elevator was built, more capacity was added—a second elevator and a large annex stood beside the Tillotson structure, and judging by their style, they probably came along not too much later. The whole complex was perfectly neat and tidy.

I took advantage of the quiet and did a thorough job photographing the exterior of the elevator and its companions. Further investigation will have to wait for a time when someone is home at the co-op.

dsc_0273

 

Specifications

The specifications describe a small, early elevator, of only 100,000 bushels capacity. It was intended to serve a mill operation. The elevator was built using the “Pond Creek plan,” which specified 4 tanks with a 15 1/2 ft diameter, 125 ft drawform walls through the cupola, an attached driveway, no distributor floor, 6 spreads and 9 bins.

Capacity per Plans (with Pack): 100,000 bushels

Capacity per foot of height: 1,020 bushels

Reinforced concrete/plans (Total): 906 cubic yards

Plain concrete (hoppers): 10 cubic yards

Reinforced steel/Plans (includes jack rods): 40.67 tons

Average steel per cubic yard of reinforced concrete: 90.3 pounds

Steel & reinforced concrete itemized per plans

Below main slab: 3,720 lb/34.4 cu yd

Main slab: 12,775 lb/84.7 cu yd

Drawform walls: 56,190 lb/694 cu yd

Work & driveway floor (including columns): 112 lb/1.3 cu yd

Deep bin bottoms: None

Overhead bin bottoms: 910 lb/6.5 cu yd

Bin roof (garner): 730 lb/7.7 cu yd

Scale floor (complete): None

Cupola walls: Drawform walls

Distributor floor: None

Cupola roof: 3,053 lb/21.4 cu yd

Miscellaneous (boot, leg, head, track sink, steps): Included

Attached driveway: 4,250 lb/56.0 cu yd

dsc_0156

 

Construction details

Main slab dimensions (Drive length first dimen.): 41 x 41 ft

Main slab area (actual outside on ground): 1,626 sq ft

Weight of reinforced (total) concrete (4,000 lb/cu yd + steel): Excluding driveway,  1,752 tons

Weight of plain concrete (hoppers 4,000 lb/cu yd): 20 tons

Weight hopper fill sand (3,000 lb/cu yd): 218 tons

Weight of grain (at 60 lb per bushel): 3,000 tons

Weight of structural steel & machinery: 10 tons

Gross weight loaded: 5,000 tons

Bearing pressure: 3.08 tons per sq ft

Main slab thickness: 18 in

Main slab steel: (straight): 1 in diameter at 9 in o. c. spacing

Tank steel at bottom (round tanks): 1/2 in diameter at 12 in o. c. spacing

Lineal feet of drawform walls: 310 ft with no extensions

Height of drawform walls: 125 ft

Pit depth below main slab 13 ft 3 in

Cupola dimensions (W x L x Ht.): 17 ft 7 in high within drawform walls

Pulley centers: 128.25 ft

Number of legs: 1

Distributor floor: No

Track sink: No

Full basement: No

Electrical room: No

Driveway width–clear 13 ft

Dump grate size: 1 at 5 ft x 9 ft

Columns under tanks-size: None

Boot — leg & head: Concrete

dsc_0255

The grain operation is a close neighbor to residents of the town. This old house is under renovation.

 

Machinery Details

Head pulley size: 72 x 14 x 2 3/16 in

Boot pulley size: 72 x 14 x 3 7/16 in

Head pulley rpm: 36

Belt: 280 ft, 14 in 6 ply calumet

Cups: 12 x 6 in at 10 in o. c. spacing

Head drive: Howell 20 horsepower

Theoretical leg capacity (cup manufacturer rating): 5,780 bushels per hour

Actual leg capacity (80 percent of theoretical): 4,600 bushels per hour

Horsepower required for leg (based on above actual capacity plus 15 percent for motor) 17.9 hp

Man lift: Hand operated

Load out scale: None

Load out spout: None

Cupola Spouting: None

Truck lift: 7.5 horsepower Ehr

Dust collector system: Fan → Air

Driveway doors: One sliding

Conveyor: None

Remarks

Cupola in drawform walls

 

Also Built

Transfer spout to mill

A look at the Johnson-Sampson elevator in Grand Island, Nebraska

dsc_1517

Kristen Cart

Sometimes it is instructive to visit an elevator built by one of the competitors of the Tillotson Construction Company of Omaha, Neb., and its offshoots, J. H. Tillotson, Contractor, of Denver, Colo., and Mayer-Osborn Construction, also based in Denver. The elevator built by Johnson-Sampson in Grand Island, Neb. is a good example, for comparison, of a project built by the competition while our grandfathers were active in the business.

One of our readers, Teresa Toland, mentioned the elevator and hoped that we knew something about it, since her father, Darrell Greenlee, had supervised its construction. A couple of years passed before I could follow up on her query. While traveling this fall, I took a detour to see the elevator and take photos. The old grain elevator stands now as a prominent Grand Island landmark, still serving its original purpose. It’s location, just off I-80 in central Neb., made it easy to visit.

The elevator hummed with activity at the height of harvest. On this trip, my dad, Jerry Osborn, was along, so I did not take time to interview the employees–we were all tired after our hunting trip, and were ready to get home. But the elevator was a lovely sight and I was glad for the chance to see it.

dsc_1526The original elevator, flanked by two annexes, was obscured behind a large modern concrete bin, so I got closer for a better look. The headhouse was unlike any I had ever seen. The elevator’s design formed a harmonious whole, much like the attractive Tillotson elevators its builder emulated, but it had taken a different direction and had its own look. It must have been a handsome sight when it stood alone, brand new, and gleaming white–the tallest thing around.

The bin arrangement for the old elevator seemed conventional for storage in the 250,000-bushel class. Adjacent to the main house stood a large capacity metal grain dryer. Including the annexes, the elevator complex was the size of a moderate terminal–the type of storage that would serve as a transit point for a rail or trucking hub.

When Virgil Johnson, an early employee of Tillotson Construction, went out on his own, he built elevators in partnership with his Sampson in-laws for a few years. Darrell Greenlee, who supervised the construction at Grand Island, was one of his superintendents.

 

 

Revisiting Greenwood, Nebraska, and its Tillotson grain elevator

DSC_9973

The Tillotson elevator and annex alongside the railroad tracks in Greenwood, Neb.

Story and photos by Kristen Cart

Along U.S. 6 between Omaha and Lincoln, Neb., stands an early testament to the ingenuity of the Tillotson Construction Company of Omaha. This early elevator, which rises alongside the highway next to its attached annex in the town of Greenwood, still holds grain. The original elevator was built with a capacity of 129,000 bushels. On the side facing the highway, stenciled in black, is a sign that says “Built by Tillotson Construction Co. Omaha Nebraska.” The lettering is partially obscured by paint and concrete patches.

Highway 6 is a very familiar stretch of road. I have driven it innumerable times between Ashland and Lincoln while visiting my family–on every run to Lincoln, the old Tillotson elevator and its annex come up on the right side of the road about a third of the way there. As a little girl, when traveling across Nebraska, I would see a white edifice on the horizon, and it meant a new town was coming up and we were closer to our destination. Now, living far away, I rarely see the elevators that have become so familiar. But last summer, I revisited this one.

DSC_0186

A Burlington Northern train slows to pass through town on an early morning run.

The Greenwood elevator was built in 1951. Its annex was added in 1954, and although we do not have the construction record of the annex among our Tillotson company papers, the embossed manhole covers identify its provenance.

The pairing of a Tillotson elevator with a Tillotson annex is fairly unusual in the company records–usually another company would come along and build an annex. During the elevator boom, it seems very likely that the Tillotson company was too busy to meet the demand for annexes that were springing up everywhere, and it is very doubtful that they competed and lost the contract at each site. The company was too good at what they did, and it is almost certain that they had more work than they could accept.

DSC_0421We have the building specifications for the original elevator in the Tillotson Construction Company records.

Greenwood’s elevator was built following the Churdan Plan, with four 14 1/2-foot-diameter tanks, 120 feet high, and a 13 x 17-foot driveway. The spread was 13 feet, and eight bins were built over the driveway. The plan called for 17 total storage bins and a dust bin, with bin number 8 split to accommodate a dryer. The total capacity was 129,000 bushels.

Grain capacity per foot of height was 1318 bushels. For the project the company poured 1255 cubic feet of reinforced concrete, and 25 cubic feet of plain concrete for the hoppers. 60.23 tons of steel were used for construction (including jack rods). The average weight of steel per cubic yard of concrete was 96 pounds. The plans broke out the concrete and steel to be used for each line item:

Below main slab: 3,200 pounds of steel; 30 cubic yards of concrete;

Main slab: 15,870 pounds of steel; 118 cubic yards of concrete

Draw-form walls: 82,377 pounds of steel; 934 cubic yards of concrete

Driveway and work floor (including columns): 3,370 pounds of steel; 26 cubic yards of concrete

Deep bin bottoms: 3,491 pounds of steel; 19 cubic yards of concrete

Overhead bin bottoms: 3,752 pounds of steel; 23 cubic yards of concrete

Bin root: 3,060 pounds of steel; 30 cubic yards of concrete

Scale floor (or garner), complete: 186 pounds of steel; 3 cubic yards of concrete

Cupola walls: 2,789 pounds of steel; 35 cubic yards of concrete

Distributor floor: 886 pounds of steel; 7 cubic yards of concrete

Cupola roof: 1,129 pounds of steel; 9 cubic yards of concrete

Misc (boot, leg, head, track sink, steps, etc.): 360 pounds of steel; 20 cubic yards of concrete

Attached driveway: driveway extension included above

DSC_0416

Concrete repairs are evident around the annex manhole cover.

Construction Details

The dimensions of the main slab were 49 x 49 feet, with a main slab area (actual outside on the ground) of 2,377 square feet. The total weight of reinforced concrete, at 4000 pounds per cubic yard plus steel, was 2,570 tons. Also computed at 4000 pounds per cubic yard, the total plain concrete weight for the hoppers was 50 tons. The fill sand for the hoppers, at 3000 pounds per cubic yard, was 360 tons. The planned weight of grain was 60 pounds per bushel, and when filled, the elevator could hold 3,870 tons of grain. Fifteen tons of structural steel and machinery were added to complete the planned gross weight, loaded, of 6,865 tons. The elevator was designed to withstand 2.89 tons per square foot of bearing pressure.

Greenwood 01The dimensions of the elevator were planned as follows:

Main slab thickness: 18 inches

Main slab steel: 1 1/4-inch square at 10-inch o. c. spacing

Tank steel and bottom for the round tanks: 1/2-inch diameter at 12-inch spacing

Lineal feet of drawform walls: 1,006 feet

Height of drawform walls: 120 feet

Pit depth below main slab: 12 feet 0 inches

Cupola dimensions (outside width x length x height): 17 x 34 x 22 feet

Pulley Centers: 145.67 feet

The elevator was designed to operate with one leg. A distributor floor, track sink, full basement, and electrical room were included in the plans. Two dump grates, 5 1/2 x 9 and 15 x 9 feet, were built. The columns under the tanks were 16 x 16 inches square, and the boot-leg and head were built of concrete.

Machinery details

Boot pulley: 60 x 14  x 2 2/16 inches

Head pulley: 60 x 14 x 3 15/16 inches

R.P.M. Head pulley: 42 rpm

Belt: 310 feet of 14-inch 6-ply Calumet

Cups: 12 x 6 inches at 9-inch spacing

Head drive: Howell 30 hp.

Theoretical leg capacity (cup manufacturer rating): 6,250 bushels per hour

Actual leg capacity (80% of theoretical): 5,000 bushels per hour

Horsepower required for leg (based on above actual capacity plus 15 percent for motor): 22 hp.

Man lift: 1 1/2 horsepower electric

Load out scale: 10 Bu. Rich.

Load out spout: 8 inch w.c.

Truck lift: 7 1/2 Ehr.

Dust collector system: fan to dust bin

Cupola spouting: 10-inch diameter

Driveway doors: 2 overhead rolling

Conveyor: none

Also built

Inside steps

Dryer provided (split bin)

 

 

 

 

 

 

 

A last farewell to a wooden elevator at Ryegate, Montana

DSC_5220

Story and photos by Kristen Cart

The search for our grandfathers’ elevators has led us to many small towns and many grain operations. Among our discoveries have been ancient wooden elevators, now quaint relics among their larger concrete cousins. In some towns, wooden elevators still have jobs to do, but their time is short.

Charles H. Tillotson built wooden elevators long before his children took up the slip-formed concrete building technique, and at one time, every Midwestern town with a rail line had a row of them serving the local farmers. Now it is increasingly rare to find a town with more than one wooden elevator in service, or for that matter, still standing.

DSC_5225

The Ryegate, Mont., elevator is flanked by its replacement fertilizer plant.

In the last year or two, in several towns, locals have told me that their wooden elevators were no longer used and would shortly be destroyed. I made an extra effort to document those elevators. This week, I almost missed one. In Ryegate, Mont., a new fertilizer plant was put into operation last year, and the elevator that had served the purpose was now slated for destruction.

When I stopped to photograph the pair of wooden elevators at Ryegate, a town on U.S. 12 in east-central Montana, I went into the local cafe for a burger. A fellow at the bar introduced himself as Ken. He wondered where my hometown was, and the purpose of my visit. When I told him I was a bit of an elevator tourist, he told me about the Ryegate elevators. DSC_5156

Ken worked at the Ryegate facility. He said that over the years, he had been employed as a grain hauler and in almost every other aspect of elevator work.

The smaller elevator was built in 1917. Ken said grain dropped 70 feet from the top of the grain spout to a truck below while loading. The elevator had been in use as recently as two years ago, then the new fertilizer plant was built nearby to replace it.

The larger elevator, built in 1914, was still used for storage—it had fresh siding and looked neat and clean on an immaculate lot. But the smaller elevator, equally handsome, would be razed next week. He hoped I would get out and take more pictures before it was gone.

Our discussion ranged from elevators to the military. Ken served in the U.S. Army, had great admiration for the old C-130 aircraft, and expounded with enthusiasm about the M-1 Abrams tank and the Tow missile. He got a kick out of talking with another veteran who shared his interest. He also spoke with reverence about serving under President Ronald Reagan.

DSC_5253

The interior of the shed addition.

Our conversation was interrupted as a young lady burst into the cafe, exclaiming,

“I just got a deer!”

As two men moved to follow her out the door to see her trophy, she said,

“Come see. I got my mulie.”

Her announcement passed without any comment at the bar. Apparently, during deer season, such declarations are expected.

Before I departed to take a closer look at the doomed elevator, Ken introduced himself more formally as Sgt. Ken Davis, and shook my hand. It was an honor to meet this veteran who served back when we had a 600-ship Navy (in the good old days, about three wars ago).

As I took another circuit around the old elevator to shoot a few last pictures, the sun played on the high clouds, projecting light like a halo radiating about the old structure. I thought it a fitting farewell.

In honor of Veterans Day, I salute Sgt. Davis and his life’s work. I hope he enjoys the pictures. DSC_5231

A recent trip west reveals mystery elevators

dsc_0976

Story and photos by Kristen Cart

After our annual trip west to tease the elk (hunting them is perhaps too strong of a term, since our freezer has admitted no elk meat for several years), we took a small detour to look at elevators. I headed the car east onto Hwy 34 in Neb. after stopping to photograph the Grand Island, Neb. elevator, a Johnson Construction project.

This time my dad, Jerry Osborn, went with us, and he humored me, though he was eager to get home. The kids just rolled their eyes and said, “Not another elevator!”

Like pearls on a string, grain elevators line up on Hwy 34 as it stretches from town to town west of Lincoln, Neb. From the look of the rounded headhouses on each elevator,  Tillotson Construction Company of Omaha had free reign there during the construction years, having butted out potential competition as it changed the landscape on the old road.

Only the York and Aurora elevators are recorded in the company construction record pages we have. I will present them more fully in a later post.

dsc_1531

The Murphy sign stenciled on the elevator does not seem to be a town name

The Murphy and Hampton elevators present a bit of a mystery. Since I had a full load of family cramped together in a rental car that was barely an SUV, more suited to a terrier dog and a bicycle than the five passengers it claimed to hold, I did not stop to investigate the mystery elevators. I had to be content with a few pictures taken on the fly.

Here they are. I wonder if any of our readers remember these elevators, or can identify the builders? They will get another visit, hopefully soon, but for now, enjoy the photos.

dsc_1536

Hampton’s elevator also has a rounded headhouse

DN Tanks builder explains differences between concrete tanks and elevators

DSC_9897

A water tank built by D N Tanks in Cary, Illinois

Story and photos by Kristen Cart

At first glance, a water storage tank and a grain elevator seem to have a few things in common, both in function and appearance, though they present a number of differing engineering challenges. I had the opportunity to interview Joseph Carroll, a project superintendent for D N Tanks, while flying on a commercial airline to start one of my trips. When he realized the lady sitting next to him had some engineering background, and actually was interested in concrete construction methods, he warmed to his subject with enthusiasm.

I wanted to find out how the construction of a tank answered the problems that grain elevator designs had to address–the management of stress (both vertical and lateral), the aging of the tank, interior access, wrecking out, weather considerations, and basic construction methods.

D N Tanks had been in the business since 1949, and some of their tanks (still in service) were built before 1950. During the heyday of elevator building, when our grandfathers operated at the cutting edge of concrete design, water tank builders were innovating right alongside them. The types of problems they had to solve had common elements with those of elevator designers, but their solutions were widely divergent.

After looking at our Tillotson construction specifications, Mr. Carroll commented that the design bearing load (the pressure of the water against the tank walls, expressed in pounds per square inch) of his tanks is about double the bearing load in a grain elevator.  Elevator builders relied on a continuous concrete pour and steel reinforcement to provide the required strength. Obviously, something had to be done differently to build a water tank that would sustain that kind of load.

D N Tanks, instead, builds tank panels which are poured in curved sections separately, then tensioned externally with wire winding as they are assembled on site.

Cold weather also creates a design challenge for concrete construction. I mentioned that in Canada, wood construction for grain elevators was preferred, because rigid concrete could crack under differential heating–an elevator would experience freezing temperatures on one side and solar heating on the other. Water tanks require insulation to prevent freezing, though they can handle surface freezing to the depth of about six inches. The tank walls are built thicker, and an insulating material of styrofoam blankets the tank exterior for installations in Alaska and other northern locations.

After the concrete roof is poured, wrecking-out is required (internal wooden concrete forms are removed). It is a process required for both elevator bins and tanks. Elevators retain the manholes used to remove the wrecking-out debris for later access to bin bottoms for cleaning. For water tanks, an access opening is left at the side to permit this process, but it is sealed afterwards. No access is needed from the side, because under normal use, the tank remains filled with water. Access to electrical systems for the pumps is from the top.

Concrete elevators are subject to much more wear and tear than water tanks. Internal friction is an issue with grain elevators:  filling and emptying of grain bins abrades the inner concrete surfaces, eventually causing cracking and damage after many years.  Tanks suffer from no such problems.

Fire is an ever present danger in grain elevators, and cleanliness is a constant battle. Tanks tend to be cleaner and safer, and if built correctly from the start, will long outlast the most robust grain elevator.

DSC_9898I happened upon one of these water storage facilities, built by D N Tanks, while attending my son’s football game at Cary Junior High School in northern Illinois. It appeared just as Mr. Carroll described as a typical D N Tank project: it was bordered with a two-foot wide lip, and topped with a white vent.

The tanks are built in cities and towns to comply with a requirement for an emergency water supply. The tank or tanks must hold enough water to last for three days after normal municipal service is lost. Unlike the many grain elevators that dot the Midwest, which rise to monumental heights, these tanks are designed to blend seamlessly into the community with as little visual impact as possible. The D N Tank website pictures a number of disguises, including architectural treatments, and fully underground construction.

D N Tanks also produces tanks for glycol used for aircraft deicing, water treatment tanks, and various other tank types.

The Tillotson elevator in Boxholm, Iowa, afforded unique photographic possibilities

DSC_0535Story and photos by Kristen Cart

The Boxholm elevator located in central Iowa was an intriguing destination, particularly since I had knowingly passed it by, missing it by a few miles on more than one trip. It became imperative to make the detour to see it. I was glad I did, since the elevator made beautiful pictures on that early summer day. I used a wide-angle lens that added pronounced distortion to the scene, causing the buildings on the edges to lean in dramatically. But the leaning lines pointed to the beautifully clouded sky.

You can use a wide-angle lens to include more of the scene from close quarters than would be possible with another lens, but you forfeit realism. This is not a problem for certain artistic photos, but it is not ideal for documentary shots. When photographing buildings where you want to preserve parallel lines, you must stand farther away and use a longer focal-length lens. At Boxholm, I did not have that option.

DSC_0547

Wide-angle lens distortion is maximized in this view.

At extremely close quarters, the wide-angle lens exaggerates height and adds drama. But the distortion becomes more pronounced.

The Tillotson Construction Company of Omaha, Neb., built the elevator in 1955. An annex stands beside it, and an old wooden feed mill is beside that. A much newer elevator with the West Central logo was built later, after it became customary to leave the concrete plain, without the white finish.

DSC_0563

A more conventional view of the elevator complex.

The specifications for the Boxholm elevator are among the Tillotson Company construction records. We learned some details about the elevator from a few stray sources before my visit; for instance, the elevator has exactly 96 light bulbs installed. Its construction followed the Drummond plan. Other projects using the same architectural plan were the elevators at Waverly, Neb., and Lahoma and Drummond, Okla.

Specifications

Capacity per plans (with Dock): 199,400 bushels

Capacity per foot of height: 2,002 bushels

Reinforced concrete per plans (total): 1,797 cubic yards

Plain concrete (3″ hoppers): 33 cubic yards

Reinforcing steel per plans (includes jack rods): 85.71 tons

Average steel per cubic yard reinforced concrete: 95.4 pounds

Steel and reinforced concrete itemized per plans:

Below main slab: 6,861 pounds steel, 59.2 cubic yards concrete

Main slab: 25,603 pounds steel, 202 cubic yards concrete

Drawform walls: 103,192 pounds steel, 1,295 cubic yards concrete

Driveway and Work floor : 3,820 pounds steel, 23.8 cubic yards concrete

Deep bin bottoms (including columns): 7,271 pounds steel, 39.3 cubic yards concrete

Overhead Bin bottoms: 6,040 pounds steel, 27.6 cubic yards concrete

Bin roof and Extension Roofs: 7,210 pounds steel, 41.7 cubic yards concrete

Scale floor (or garner complete): 160 pounds steel, 2.5 cubic yards concrete

Cupola walls (including leg & head): 7,257 pounds steel, 76 cubic yards concrete

Distributor floor: 1,560 pound steel, 9.4 cubic yards concrete

Cupola roof: 2,147 pounds steel, 15.6 cubic yards concrete

Misc. (track sink, steps, etc.): 173 pounds steel, 3.5 cubic yards concrete

Attached driveway: none

Bridge and/or Tunnel: none

Pit Liner–plain: 16 cubic yards concrete

Drier Bin Bottom: 134 pounds steel, 1.3 cubic yards concrete

Coffer Dam, Cleaner Floor: Wood

Remarks: 10 Bin Hot spot; 8 Bin Aeration tubes; Dryer bin

DSC_0541

The rounded headhouse is a reliable indicator of a Tillotson elevator

Construction details

Like Waverly: construction details were identical to Waverly and not listed separately in the records.

Main slab dimensions (drive length first dimension): 56 1/2′ x 70′

Main slab area (actual outside on ground): 3,850 square feet

Weight reinforced (total) concrete (4000 pounds per cubic yard plus steel): 3,747 tons

Weight plain concrete (hoppers; 4000 pounds per cubic yard): 98 tons

Weight hopper fill sand (3000 pounds per cubic yard): 732 tons

Weight of grain (at 60 pounds per bushel): 5,982 tons

Weight of structural steel and machinery: 20 tons

Gross weight loaded: 10,579 tons

Bearing pressure: 2.75 tons per square foot

Main slab thickness: 24″ with 3″ pile cap

Main slab steel: straight #9 at 7″ spacing

Tank steel and bottom (round tanks): #4 at 12″ spacing

Lineal feet of drawform walls & extension: 606′

Height of drawform walls: 120′

Pit depth below main slab: 15’3″

Cupola dimensions (outside width x length x height): 22 1/4′ x 48 1/2′ x 35′

Pulley centers: 160.75′

Number of legs: 1

Distributor floor: yes

Track sink: yes

Full basement: yes

Electrical room: yes

Driveway width clear: 13′

Dump grate size: 2 at 9′ x 5′ and 9′ x 15′

Column under tanks size: 16″ square

Boot legs and head: concrete

DSC_0531Machinery details

Boot pulley: 72″ x 14″ x 4 15/16″

Head pulley: 72″ x 14″ x 2 7/16″

R.P.M. Head pulley: 42

Belt: 335′, 14″ 6 ply Calumet

Cups: 12″ x 6″ at 8″ spacing

Head drive: Howell 40 horsepower [4 circled here]

Theoretical leg capacity (cup manufacturers rating): 8,440 bushels per hour

Actual leg capacity (80% of theoretical rating): 6,750 bushels per hour

Horsepower required for leg (based on actual capacity): 32 horsepower

Man lift: 1 1/2 horsepower Ehr.

Load out scale: 25 Bushel

Load out spout: 10″ diameter

Truck lift: 7 1/2 horsepower Ehr.

Dust collector system: Fan to bin

Cupola spouting: 10″ diameter

Driveway doors: 2 overhead rolling

Conveyor: provision

Remarks

see page 10 (above)

A Tillotson skyscraper dominates corn country in Randall, Iowa

DSC_0638

Story and photos by Kristen Cart

During every elevator scouting trip, there comes a fork in the road where we choose which elevator to see, and which to save for another time. On the way home from Nebraska this summer we came to such a place at the junction of Iowa Route 175 and US 69 in central Iowa. To the north I could see the silhouette of an elevator at Jewell, and just east from Jewell, across the South Skunk River, the town of Ellsworth beckoned. But as I checked my map, to the south I saw Randall, which was a familiar name. I elected to turn south onto US 69.

The name should have been familiar, because it is found in several places in the Tillotson Construction Company records. The elevator in the central Iowa town of Randall was built in 1949 using the “Dike Plan.”

DSC_0662

The elevator commands the Randall skyline

In the company records for subsequent projects at West Bend and Pocahontas, Iowa, both built using the Dike plan, the quantities of concrete and steel and the machinery details were summarized with the shorthand, “Like Randall,” for each project. The Dike plan was widely used for Tillotson’s quarter-million-bushel elevators.

The Randall elevator and its annexes overlooked a silent street of empty storefronts on that quiet Sunday. The co-op office looked new and efficient. The town was a perfect snapshot of the principle of economy-of-scale: the small business, like the small farm operation, must grow, combine forces, or die.

We have the construction records for Randall’s elevator and its siblings in West Bend and Pocahontas, which vary in minor details. Randall’s specifications follow.

DSC_0644

The Randall Lumber Co. appears to be a survivor of the economic slump.

 

Specifications

Capacity per plans (with Dock): 252,000 bushels

Capacity per foot of height: 2,520 bushels

Reinforced concrete per plans (total): 2,066 cubic yards

Plain concrete (hoppers): 40 cubic yards

Reinforcing steel per plans (including jack rods): 109.37 tons

Average steel per cubic yard reinforced concrete: 106 pounds

Steel and reinforced concrete itemized per plans:

Below main slab: 4,637 pounds steel, 40 cubic yards concrete

Main slab: 39,291 pounds steel, 266 cubic yards concrete

Drawform walls: 129,000 pounds steel, 1,430 cubic yards concrete

Work and Driveway floor (including columns): 3,700 pounds steel, 24 cubic yards concrete

Deep bin bottoms: 11,832 pounds steel, 58 cubic yards concrete

Overhead Bin bottoms: 4,876 pounds concrete, 30 cubic yards concrete

Bin roof (or garner): 8,791 pounds steel, 56 cubic yards concrete

Scale floor (complete): none

Cupola walls: 8,404 pounds steel, 92 cubic yards concrete

Distributor floor: 1,848 pound steel, 11 cubic yards concrete

Cupola roof: 2,360 pounds steel, 18 cubic yards concrete

Misc. (boot, leg, head, track sink, steps, etc.): 3,000 pounds steel, 30 cubic yards concrete

Attached driveway: 1000 pounds steel, 11 cubic yards concrete (driveway extension, walls and roof)

DSC_0664Construction details

Main slab dimensions (drive length first dimension): 60′ x 72 1/2′

Main slab area (actual outside on ground): 4,200 square feet

Weight reinforced (total) concrete (4000 pounds per cubic yard plus steel): 4,241 tons

Weight plain concrete (hoppers 4000 pounds per cubic yard): 74 tons

Weight hopper fill sand (3000 pounds per cubic yard): 985 tons

Weight of grain (at 60 pounds per bushel): 7,560 tons

Weight of structural steel and machinery: 20 tons

Gross weight loaded: 12,880 tons

Bearing pressure: 3.06 tons per square foot

Main slab thickness: 21″

Main slab steel: bent 1″ square at 7″ o. c. spacing

Tank steel and bottom (round tanks): 1/2″ diameter at 9″ o. c. spacing

Lineal feet of drawform walls: 655 excluding extension

Height of drawform walls: 120′

Pit depth below main slab: 14’9″

Cupola dimensions (outside width x length x height): 24 1/2′ x 50 1/4′ x 40′

Pulley centers: 165.25′

Number of legs: 1

Distributor floor: yes

Track sink: yes

Full basement: yes

Electrical room: yes

Driveway width clear: 12′

Dump grate size: 2 at 9′ x 6′ and 9′ x 14′

Column under tanks size: 20″ square

Boot legs and head: concrete

DSC_0635Machinery details

Boot pulley: 72″ x 14″ x 2 3/16″

Head pulley: 72″ x 14″ x 3 15/16″

R.P.M. Head pulley: 42

Belt: 355′, 14″ 6 ply Calumet

Cups: 12″ x 6″ at 8 1/2″ o. c. spacing

Head drive: Howell 40 horsepower [3 circled here]

Theoretical leg capacity (cup manufacturers rating): 7,920 bushels per hour

Actual leg capacity (80% of theoretical rating): 6,340 bushels per hour

Horsepower required for leg (based on above actual capacity plus 15% for motor): 32 horsepower

Man lift: 2 horsepower Ehr.

Load out scale: 10 Bu. Rich.

Load out spout: 10″ w.c.

Cupola spouting: 10″ diameter 14 gauge

Truck lift: 7 1/2 horsepower Ehr.

Dust collector system: Fan to bin

Driveway doors: 2 overhead rolling

Conveyor: provision

Remarks

3 bin distributor under scale

Provision for hopper scale

 

 

 

 

The twin of the vanished Glidden, Iowa, elevator still stands at Churdan, Iowa

DSC_0476Story and photos by Kristen Cart

Tucked into a nest of grain bins in the west-central Iowa town of Churdan is an old original elevator built by Tillotson Construction Company of Omaha, Neb. The annex hard by its side also boasts the Tillotson name.

DSC_0454

It is immediately obvious that the old Tillotson structure has been updated at some time in the past with a leg that extends above the headhouse, thereby keeping the machinery most prone to overheating far from accumulations of grain dust.

DSC_0497DSC_0490The annex beside it shows signs of cracking. Stress cracks are an old enemy of elevators, a problem which eventually spelled the demise of the Churdan elevator’s twin at Glidden, Iowa, and also the Mayer-Osborn elevator at Maywood, Kan.

Manhole covers along the side declare that the annex was built by Tillotson Construction in 1955.

DSC_0486An elevator built by Quad States was added to the Farmers Cooperative complex some years later. (Its trademark stepped headhouse is curved only at the outside margins, a usually reliable indicator of a Quad States design. A manhole cover dated 1969 boasts its provenance.)

A white-painted metal bin, served by the Tillotson elevator headhouse, was also added to the site to increase storage capacity.

DSC_0463

Click the photo to witness the demolition

After demolition of two faulty bins in 2013, the concrete remnants were bulldozed into the center of an empty lot across from the co-op office.

A large-capacity shiny metal bin across the street completes the scene.

We are fortunate to have the specifications for the Churdan elevator, which is an early example built in 1949, and for its 198,960-bushel annex. The elevator specifications are detailed below.

The “Churdan Plan” was used for a number of Tillotson elevators, including Glidden, Sanborn, Gilmore City, and Thompson, Iowa; Greenwood and Fairfield, Neb.; and Montevideo, Minn. The construction of elevators using this plan spanned from 1949 to 1952. Specifications varied according to an individual customer’s  requirements.

The “Churdan Plan” consisted of four 14 1/2-foot-diameter bins, 100 feet tall, with a 13-by-17-foot driveway and eight bins over the driveway. It had a 13-foot spread. Notations in the company record said “bin split for drier” and “16 bins and dust bin.”

Specifications

Capacity per plans (with Dock): 102,000 bushels

Capacity per foot of height: 1,318 bushels

Reinforced concrete per plans (total): 1,083 cubic yards

Plain concrete (hoppers): 25 cubic yards

Reinforcing steel per plans (including jack rods): 57.72 tons

Average steel per cubic yard reinforced concrete: 106.5 pounds

Steel and reinforced concrete itemized per plans:

Below main slab: 3,133 pounds steel, 29 cubic yards concrete

Main slab: 15,937 pounds steel, 113 cubic yards concrete

Drawform walls: 73,405 pounds steel, 760 cubic yards concrete

Work and Driveway floor (including columns): 3,370 pounds steel, 26 cubic yards concrete

Deep bin bottoms: 3,480 pounds steel, 19 cubic yards concrete

Overhead Bin bottoms: 3,752 pounds concrete, 23 cubic yards concrete

Bin roof (or garner): 3,060 pounds steel, 30 cubic yards concrete

Scale floor (complete): 186 pounds steel, 3 cubic yards concrete

Cupola walls: 3,481 pounds steel, 35 cubic yards concrete

Distributor floor: 886 pound steel, 7 cubic yards concrete

Cupola roof: 1,129 pounds steel, 9 cubic yards concrete

Misc. (boot, leg, head, track sink, steps, etc.): 1,036 pounds steel, 20 cubic yards concrete

Attached driveway: 600 pounds steel, 9 cubic yards concrete (driveway extension)

DSC_0494Construction details

Main slab dimensions (drive length first dimension): 48′ x 48′

Main slab area (actual outside on ground): 2,270 square feet

Weight reinforced (total) concrete (4000 pounds per cubic yard plus steel): 2,224 tons

Weight plain concrete (hoppers 4000 pounds per cubic yard): 50 tons

Weight hopper fill sand (3000 pounds per cubic yard): 360 tons

Weight of grain (at 60 pounds per bushel): 3,060 tons

Weight of structural steel and machinery: 15 tons

Gross weight loaded: 5,709 tons

Bearing pressure: 2.52 tons per square foot

Main slab thickness: 18″

Main slab steel: straight 1 1/4″ square at 10″ o. c. spacing

Tank steel and bottom (round tanks): 3/8″ at 8″ o. c. spacing

Lineal feet of drawform walls: 440 excluding extension

Height of drawform walls: 90′

Pit depth below main slab: 12’0″

Cupola dimensions (outside width x length x height): 15′ x 32 1/3′ x 22′

Pulley centers: 115.67′

Number of legs: 1

Distributor floor: yes

Track sink: yes

Full basement: yes

Electrical room: yes

Driveway width clear: 13′

Dump grate size: 2 at 9′ x 5 1/2′ and 9′ x 15′

Column under tanks size: 16″ square

Boot legs and head: concrete

Machinery details

Boot pulley: 60″ x 14″ x 2 3/16″

Head pulley: 60″ x 14″ x 3 15/16″

R.P.M. Head pulley: 44

Belt: 272′, 14″ 6 ply Calumet

Cups: 12″ x 6″ at 9″ o. c. spacing

Head drive: Howell 30 horsepower [3 circled here]

Theoretical leg capacity (cup manufacturers rating): 6,540 bushels per hour

Actual leg capacity (80% of theoretical rating): 5,230 bushels per hour

Horsepower required for leg (based on above actual capacity plus 15% for motor): 19.9 horsepower

Man lift: 2 horsepower Ehr.

Load out scale: 10 Bu. Rich.

Load out spout: 8 1/4″ w.c.

Cupola spouting: 10″ diameter 14 ga.

Truck lift: 7 1/2 horsepower Ehr.

Dust collector system: Fan to bin

Driveway doors: 2 overhead rolling

Conveyor: None

Remarks

Split bin for dryer