The trading partnership of Bagley & Cargill in South Dakota

Bagley

Our friend, Brad Perry, saw the recent posts about Cargill history and was prompted to send some of his photos.

“The Bagley name still shows up in South Dakota along U.S. 12,” Perry notes. This elevator turns up in an online source that says the location is Andover, just east of Aberdeen.

“George C[olt]. Bagley was a member of a grain-trading family in eastern Wisconsin,” Wayne G. Broehl, Jr. writes in his massive history of Cargill. 

In the early 1880s, Wisconsin farmers were moving out of wheat and into livestock, so Bagley betook himself to South Dakota and partnered with Sylvester Cargill, one of the five Cargill brothers.

Broehl continues:

Most of the Bagley & Cargill operations were in that part of the Dakota territory that later became the northeastern section of South Dakota. Similar to Jim Cargill’s larger-capacity operations in the Red River Valley, the Bagley & Cargill’s 13 structures at the firms 10 locations were more substantial (although only one was classified as an elevator.) This elevator, at Aberdeen, had a capacity of 25,000 bushels; the Andover warehouse had the same; the Groton operation had an 18,000-bushel capacity and the Bath warehouse, 15,000.

An extensive biography of Bagley says the company concentrated on towns along the Chicago, Milwaukee, St. Paul and Pacific Railroad.

The partnership lasted “only a short time.” Bagley’s wife, Cornelia, would later recall, “Ves Cargill [Sylvester] was a partner but George could not put up with his suspicion of all deals and bought him out.”

 

American Colossus, the blog, recounts a century of early grain elevators

Screen shot 2018-08-20 at 10.11.43 AM

By Ronald Ahrens

One thing leads to another, and somehow we found ourselves looking at someone else’s blog about grain elevators. “This blog hosts information about American Colossus: The Grain Elevator 1843 to 1943, written by William J. Brown and published by Colossal Books in February 2009,” says the blog’s introduction.

Then Brown generously includes the introduction to the book. Among other things, it mentions the work of Barbara and Bruce Selyem:

Brown writes: “One of the striking things about Barbara and Bruce Selyem’s The Legacy of Country Elevators: A Photo Essay, Kansas History, Spring/Summer 2000, is that it includes so many pictures that show traditional country elevators built out of wood standing next to modern country elevators built of reinforced concrete. The latter are often twice the height of the former and distinctly ‘urban’ in character.”

Screen shot 2018-08-20 at 10.12.47 AM

There’s also a citation for “Concrete Elevators,” a 1913 article by Barney I. Weller (from which we took screenshots). The abstract, which is the first paragraph of Weller’s article, says:

“Elevators as a means of housing and handling grain did not make their appearance until the latter part of the last century. The first real elevator of which there is any record is the ‘cribbed’ wood type and there are still a good many of these elevators in existence. This type is interesting when it is considered that at one time an elevator of nearly 4,000,000-bushels capacity was erected complete, and almost totally filled with grain in a period of forty-four days. Of course, lumber was plentiful, no expense was spared and no restrictions were put on the builder. As the price of lumber advanced it became necessary to look for other material; the elevator operator and owner seeking a material which would lower appreciably the very high insurance rate on wood.”

Thanks to Google Books, we find the entire article by using this link.

 

 

 

 

The story behind the WSJ’s story of a cast-off elevator in Burlington, Colo.

Burlington 01

By Ronald Ahrens

From reading Wayne G. Broehl, Jr.’s huge history of Cargill, I’ve become alert to other news about the grain-trading behemoth. So a Wall Street Journal article, titled “Growers’ New Clout Tilts Farm Economy,” caught my eye on Aug. 16 

“Powerful farmers push Cargill, ADM for better prices, and may soon compete,” the sub-headline reads.

According to Jacob Bunge’s story, several factors have risen in importance to give large farmers more leverage.

One is that farmers have more storage capacity for their grain. They don’t have to sell soon after harvest, going to the local elevator and accepting the current price.

A second factor is more options for direct sale of crops to stock feeders or ethanol plants.

And like everything else, there’s a digital aspect. “Venture capital-backed startups are developing services that scan a wider range of grain buyers or connect farmers directly with food makers,” Bunge reports.

Burlington 02

Bunge’s story in the Journal tells of a Cargill grain buyer who “said his job got harder still after Cargill in 2016 sold the Burlington, Colo., grain elevator–and later, nearby cattle feedlots that were reliable destinations for the grain grown by many of [the buyer’s] contacts.”

Here we skidded to a stop. Burlington, Colo., is in the records of Tillotson Construction Co. My uncle, Charles J. Tillotson, worked on Burlington and recalls a 1950 incident there involving a train and cement mixer. The locomotive derailed, but no one was injured.

The 300,000-bushel Burlington elevator had eight tanks of 20 feet in diameter and 115 feet in height. It was a twin-leg elevator with a pit 19 feet deep. The cupola measured 23 feet wide, 63.75 feet long, and 44 feet high. Pulley centers were 168 feet apart.

Could this be the same elevator Cargill sold two years ago? The big company has “divested itself of some far-flung grain elevators that aren’t near a railroad or river.”

And Bunge recounts another marvel: the anecdote concerns an Illinois farmer–one who tills 9,000 acres and rents out 5,000 more–who partnered with another farmer to buy a 750,000-bushel Cargill elevator. 

If they don’t find it too expensive to operate and insure, dispatching large quantities of grain when and where they want will be a challenge for Cargill and ADM to face.

 

Book report, Part Two: In the 1800s, Cargill already had huge elevators

Cargill 03

By Ronald Ahrens

Although it’s understandable why, we fail to appreciate how big and well-developed the grain business already was by the the years after 1895, when electric motors were adopted to power internal mechanisms and reinforced-concrete was first used for elevator construction.

This much we take away from Section One of Cargill: Trading the World’s Grain. Will Cargill, the “Frontier Entrepreneur” of the section’s title, boldly expanded his operation as the railroads pushed northwest and Minneapolis became a center of trade.

In an 1889 statement of holdings, Cargill said he had “54 Elevators & Warehouses in Minn & Dakota)” worth $147,597.16 and “16 Elevators and Warehouses in Wisc, G Bay RR” worth another $18,479.29.

Cargill 02We tend to think of wooden elevators as modest structures, but in the 1870s the New York Central & Hudson River Railroad had two massive terminals in New York City holding 3.5 million bushels of grain for export. Cargill shipped over the Great Lakes to Buffalo and then by rail to the terminals.

Buffalo also had millions of bushels of capacity in its multitude of elevators.

As early as 1873, a year of economic panic and the start of a profound international depression (not to mention a Midwestern grasshopper plague), Will Cargill was building elevators and warehouses along the railroad tracks. He shelled out more than $12,000 for “a large elevator” in Cresco, Iowa.

Panic 01Three years later Cargill had settled in La Crosse, Wisc. When he and his wife, Ella, went on a pleasure trip to Chicago, a La Crosse newspaper said, “They have been making so much money on wheat they they’ll buy Chicago if they feel like it.”

And in 1879, Cargill’s office became part of a telephone network in La Crosse. Author Wayne G. Broehl, Jr. points out it was only three years after Alexander Graham Bell invented the telephone.

At the same time Cargill expanded along the Green Bay and Minnesota line with nine warehouses. As a lake port, Green Bay became an important focal point, and here Cargill and his partner bought a 30,000-bushel warehouse and leased a 250,000-bushel terminal. The latter, which stood 100 feet high, had been built in 1862 for $80,000.

Decades later, Tillotson Construction Co., of Omaha, showed the value inherent in a fire-proof elevator built of reinforced concrete. In 1946, for example, Tillotson put up a 250,000-bushel concrete elevator at Dike, Iowa, for $87,250.

In the early 1880s, a new type of wooden elevator, the cribbed elevator, became common. As Milo S. Ketchum wrote in The Design of Walls, Bins, and Grain Elevators, published in 1907, “In this construction, 2″ x 4″, 2″ x 6″, or 2″ by 8″ are laid flatwise, so as to break joints and bind the structure together and are spiked firmly.”

Some called the method a “log cabin” approach. It resisted the insistent, fluid-like pressure on the sides and made for stout construction.”

In the 1880s, with another partner, George Bagley, Cargill pushed into the Dakota Territory with a small elevator at Aberdeen and several warehouses. By 1886, Bagley & Cargill also had a 250,000-bushel terminal in Minneapolis.

Combining all Cargill-controlled storage facilities, there was 1.6 million bushels of capacity–ready for the bounty of wheat that poured in as farming began in the Red River Valley.

 

The engineering behind elevator construction began with retaining walls

 

Before electronic scales weighed the grain, weights and a fulcrum did the trick.

Story by Kristen Cart

Nothing is quite so revealing as a vintage book. Ronald Ahrens alerted me to his discovery of an engineering textbook, written by Milo S. Ketchum, about retaining walls and elevator bins. Prof. Ketchum was the dean of the College of Engineering at the University of Colorado (my alma mater) when he wrote The Design of Walls, Bins, and Grain Elevators. First published in 1907 by the Engineering News Publishing Company, of New York, it boasted a second edition in 1911.

From the first few paragraphs, revelations abound. Most eye-opening is the historical context of its publication.

In 1907, surviving Civil War veterans were well-established in their old age. No one yet considered the possibility of the worldwide conflagrations to come. Comanche wars in Texas were still an ugly living memory, more recent to people than the Vietnam War is to us. Grandmothers shared their memories of living in sod houses on the Great Plains. Movies were not yet a national pastime. Airplanes and automobiles were on the drawing board–the Ford Model T would begin production the following year.

When grain was delivered to elevators, it came by barge, rail, or wagon. The business model that drove the elevator boom was in its infancy. Engineers had just begun working with reinforced concrete for bridges, dams, and skyscrapers, but much remained to be done.

Grain transport by truck was a later innovation.

In the introduction, the book gets right to the nuts and bolts of the problem it purports to solve.

A special subset of engineering concerns granular fluids. Grain acts both as a solid and as a fluid–it can be piled in a conical pile because of internal friction which is absent in liquids, but it can flow very much like water. Containing such a fluid requires an understanding of internal pressures–both vertical and outward–that are exerted on a container. All of these considerations boil down to a mathematical model that accurately describes the materials, structures, and shapes required.

The book first examines retaining walls, the simplest structure for containing granular fluids, and proceeds to bins and elevators from there.

Failure to heed safe engineering principles bore disastrous results in Fargo, North Dakota.

Thus we have a textbook that gets into the weeds of that math and physics, ultimately used to teach future designers how to do grain bins. The young men schooled in the years following 1907 would be the builders, engineers, superintendents, and architects who started the concrete elevator building boom.

Early grain-storage leader Buffalo experienced the boom in full

Buffalo 07

By Ronald Ahrens

“Silent crowd watches through the long night hours as workers search mill ruins for more missing bodies,” the Buffalo Times blared in 1913.

As an early leader in grain storage and milling, Buffalo, N.Y., was also a test site (of sorts) for elevator mishaps.

This report, culled from a firefighting blog, shows how the explosion even hit a passing train: 

An explosion devastated a grain elevator, killing at least 17 men and injuring 60 more. The elevator, located at the Husted Milling and Elevating Co. at Elk and Peabody streets, was left in flames after the dust explosion. The engineer of a passing train was killed by the blast that shattered windows, injuring many passengers. A dozen boxcars loaded with grain were also destroyed. Every ambulance in the city responded, but there were so many injuries that the flatbed section of the damaged train was used to transport many of the wounded grain elevator workers. Firemen poured tons of water on the volatile remains all day and into the night, hoping to cool things enough to allow a complete search. Losses were estimated at a half-million dollars.

Grain dust is explosive. After the electrification of elevator mechanisms in the late-1890s, it took a while to figure out that electric motors should be shielded to suppress sparks.

Static electricity can build up around conveyor belts.

Machinery can overheat.

And of course, there’s a reason “No Smoking” warnings are now everywhere in an elevator.

Tillotson Construction Company’s first reinforced concrete elevator, which was built in 1939 at Goltry, Okla., had a dust collection system. Notes in the company records say, “3 H.P. fan, 42″ collector dust bin.”

We lack any more details but are striving to increase our knowledge of dust collection inside elevators.

 

 

 

 

Around 1900, electricity and concrete were advances for Buffalo’s elevators

Buffalo 03

Buffalo and Erie County Historical Society

By Ronald Ahrens

Yesterday we looked at the rise of Buffalo, N.Y., as a grain storage and processing center, one that developed after the the Erie Canal opened in 1825. Buffalo was the port where grain was unloaded from lake boats to canal boats. A bevy of steam-powered bucket elevators sprang up.

Today we consider the advances made in Buffalo after the introduction of electricity and electric motors to replace coal and steam engines. We also look at the rise of slipformed concrete to replace wooden elevator houses.

In his essay on the history of Buffalo’s elevators, Henry H. Baxter notes that inexpensive electric power permitted the electrification of elevators. It also encouraged grain processing: the milling of cereal, flour, and animal feed.

Buffalo 05The first electric elevator–a retrofitting, we assume–was soon after a large-capacity generating station started up in 1895. Two years later, the Electric and  Great Northern elevators were built solely around compact electric motors.

“In this way they eliminated steam boilers, engines, chimneys, numerous workers, and the necessity of bringing fuel to the elevator or mill site,” Baxter explains.

Nevertheless, grain scoopers were still needed, and the Irish from South Buffalo dominated the International Longshoremen’s Association Grain Shovelers Union Local 109 as late as 1940. During Buffalo’s heyday as many as 3,000 men were employed scooping grain from the holds of lake carriers. By 1996, the Buffalo News reported only 80 scoopers remained, the last of their kind in the United States.

A Facebook page offers revealing photos of scoopers at work.

The corresponding advance was the use of reinforced concrete. Baxter explains: “At first, bins were built of wood and usually lined with iron. After 1890 steel bins were built in a number of different arrangements. Since that time reinforced concrete has been used.

Buffalo 04

Buffalo and Erie County Historical Society

To get up to the headhouse, workers used a man lift. “This is an endless moving belt stretching from basement to the top with 12-inch square platforms attached every 25 feet or so. To go up or down a worker has only to step on a wooden platform going in his direction and hold on.”

Baxter does not specify what a worker might hold for security. Of course, a worker could  fall–that’s why enclosed cages replaced the more primitive method.

A reinforced-concrete elevator was built at Buffalo in 1907. Baxter’s understated description of the method is worth quoting at length:

At the beginning, a form usually four feet high was built on the foundation slab. Screw jacks placed at intervals of about seven feet were used to raise the form. Workers operated the jacks at a rate calculated to raise the form about six inches an hour. This rate gave concrete time to set at the bottom before being exposed by the slowly rising form.

Using this method it took about ten days for the Standard Elevator to reach the height of 125 feet. This was the average height of the bins. After completion of the bins, the workhouse was slipformed up until the structure reached a height of about 200 feet.

The top or deck of a grain elevator under construction was an extremely busy place. Placement of steel rods, pouring of concrete, and jacking of the form were continuous processes. Generally, each jack man had twelve jacks to tend to. A whistle sounded as a signal for each man to make one turn on each jack. Raising the form six inches required 24 whistle signals each hour. During that time a jack man would make 288 turns–almost five a minute–on his jack. Understandably a jack man occasionally got tired enough to miss a few turns. This caused his section of the form to be lower than the rest, resulting in a considerable stress on the form. Such an imbalance brought distress to the job superintendent.