The Alta, Iowa, grain elevator’s unique layout was ‘a different kind of job’

scan0009

Commentary by Neil A. Lieb and photos from the Neil A. Lieb Archive

This post’s two photos show early stages of work on Tillotson Construction Company’s grain elevator at Alta, Iowa, in the spring of 1950. In a July 22 phone conversation, Neil Lieb, who worked on this elevator as a Tillotson employee (1949 to 1951) described details:

Three tanks on right, two on left, a square tank on left … The little tanks were a lot more trouble to make. Alta was not designed by Tillotson. It was designed by some outfit out of Kansas City. So it was a different kind of a job, and it was specifically designed—they had some kind of a grain-drying system that was relatively new. When these [elevators] were built, they didn’t dry the grain. It had to be dry before you put it in. Alta had some kind of a drying system. These bins were all designed—the whole idea was you could have smaller quantities of grain stored that was wet, and you’d run it out of these bins and through the dryer into the bins below. Half full of wet grain, the other half full of dry. The dry was taken back and dumped in the major silos.

scan0008

 

The co-ops in Iowa were very large in those days, with hundreds of members signed up. They would take a sample out of the load and do a moisture content test. So they would test each load and put it in one of these tanks based on how much moisture it had. When they went to dry it, it would take out the required amount of moisture. I know we had a lot of extra electrical work.

The plans for the elevator are inscribed on the elevator [slab], so you could set the forms where they belonged. The scribing was done a couple of days after the slab was poured. So when you build forms and moved them in, you knew exactly where to put them. It looked like it was all hit and miss, but it wasn’t.

Sixteenpenny nails were used in nailing together the forms. When you’re doing this, the foreman will count heads. You make all these interior pieces before you do anything else. When you make these, the foreman counts out heads, and he opens that many kegs of sixteenpenny nails, and they’re all supposed to be empty when you go home at night. Fifty-pound kegs and twenty-ounce hammer, and you start the nail and drive it with three strokes. The nail is a little over seven inches long. When you do that all day long for several days, you develop a real good right arm.

Analysis of photos from Tillotson Construction’s job in Alta, Iowa

 

scan0020

By Charles J. Tillotson with photos from the Neil A. Lieb archive

The images from the Neil A. Lieb Archive are the best historical, phase-by-phase photos that I’ve seen yet. They give the layman a good concept of what actually takes place, from start to finish, in building a grain elevator.

A few comments I might add:

The excavation for the foundation began with dynamite.

Excavating the foundation began with a bang.

Neil writes about the use of dynamite during the excavation process. Dynamite was used for foundation excavation on many a job because of the deep frost. We even used it for cutting the foundation of the reinforced concrete garage we built on the old place in Omaha. We were young ’ns then, but still got to set (light) the fuses to a few charges.

I remember getting the neighbors excited about what the hell we were doin’ now.

By the way, the garage utilized slip-form construction with steel stays instead of wood for the formwork—another of Dad’s experiments. He was interested in finding materials that could be reused over and over, rather than having to buy lumber formwork for every new job. I guess this method didn’t make a lot of sense, as he never tried it out on an elevator.

scan0008

This photo is an historical testimony as to how the so-called unskilled, common man could be taught layout along with measuring, wood cutting, and other carpentry skills. The labor used to build these forms and construct the entire grain elevator structure was obtained, for the most part, from the inhabitants of the local vicinity where the elevator was to be built. Most of the workmen had no experience whatsoever in the construction industry.

scan0010

People used to marvel at how the cement went into the top of the formwork and came out the bottom of the forms, in a set-up, semi-solid state, all occurring whilst the deck and forms continued to extend upwards, being jacked up on screw jacks. Once the slipping of the forms began, it never stopped, unless by a power outage, a severe storm, or some other interference.

scan0014

Beneath the deck and main formwork, a sub-scaffolding was constructed to provide access to the exterior face of the concrete structure, which required patching and touch-up for a final smooth finish. A rich mixture of cement, sand, and lime was used which was applied to the concrete face by hand, usually covering the entire exterior surface, removing all blemishes. The finish material was hoisted in five-gallon buckets to the finishers. These workmen traversed the scaffold of wood planking—usually two, 2 x 12s laid flat between the wooden hanger frames that attached to the formwork above. Very dangerous work without a safety net!

At the ground level, a workman on a tractor would load a Georgia buggy with cement, to be hoisted to the top and placed in the formwork. Small skip loaders, tractors with scoop-type buckets mounted on the front, were an essential tool used during construction. This included scooping up the sand, gravel, and cement to make concrete and placing them in a mixer.

Neil A. Lieb collection Once the concrete was ready for placement, the tractor scoop was filled with the cementitous mixture and transported to the side of the elevator whereby the tractor would dump its load into a Georgia buggy to be hoisted up to the deck for placement.

Because of the extensive use of the tractor, more than one would be worn out. During the extremely active 1950s, Tillotson Construction Company would purchase Ford Ferguson tractors a dozen at a time, just to keep up with the need for replacement

The logistics of material supply was always challenging for the grain elevator builder. Usually, the projects were located in very rural farmland areas, where the supply of lumber, steel, sand, gravel, cement, gasoline, and oil was miles from the site. Because the construction utilized the slip-form method, the operation never stopped once it began, making it paramount that the supply of materials be established beforehand along with a comfort level that there would be no interruption once the job started.

Neil has noted (in an as yet unpublished commentary) the mixture of the gleaming, white, finished “paint,” which wasn’t really paint at all but instead a cementitious mixture that lasted for a very long time. Some of the elevators existing today still boast the original finish. Tillotson was among the few contractors that finished out their jobs this way.

scan0005

Training the local unskilled labor in the processes of placing and wire-tying the reinforcing steel –and of pouring concrete, turning screw jacks, keeping the slip-form deck level, et cetera– were just a few of the many headaches the job superintendent had to bear during the initial start-up phases.

A view of early preparations at the foundation of Alta Cooperative’s elevator

scan0003

Photo from the Neil A. Lieb Collection

In a July 22 telephone conversation, Neil A. Lieb, who worked for Tillotson Construction Company from 1949 to 1951, described for us the elements of this photo, taken in the spring of 1950 during the earliest stage of work on the Alta Cooperative elevator, in Alta, Iowa.

  • The slab and rebar box in middle is the pit, covered with wood to leave a hole in concrete.
  • The horizontal box in the background is for the elevator’s leg, the critical motor-driven pulley-and-belt mechanism with attached scoops that lift the grain from the pit to the headhouse for distribution to bins and silos.
  • Planking is to provide a smooth course for the wheelbarrow in order to transport and dump freshly mixed concrete.
  • The dirt in the background came from the excavation.
  • In the center, the larger black tank on left contains acetylene and the smaller one holds oxygen, for fueling a torch, presumably to cut rebar.
  • The concrete mixer (upper left) had the capacity of one-half or one cubic yard of concrete.

Editor’s note: Although there is some distortion, the upper-right corner appears to show a worker who is bent at the waist and leaning away from the camera.

 

 

Emerging Terrain’s banners come down from the storage silos at Vinton Street

Banners Page 1

By Ronald Ahrens

As these pages from the July 22 edition of the Omaha World-Herald show, the community art project that adorned storage silos at Tilltoson Construction Company’s landmark Vinton Street elevator have been taken down.

The story by Casey Logan explains that various exigencies combined to signal “time’s up” for the displays.

We were fortunate to have visited in 2012 and seen them for ourselves.

And now we ask what’s next for this massive terminal complex?

Banners Page 2

 

 

 

 

Excavating with explosives led to trouble on Tillotson’s Alta, Iowa, elevator

 

scan0001

Story by Neil A. Lieb and photos from the Neil A. Lieb Collection

I do not know exactly when the Alta job started, but I think it was in March or early April of 1950. At that time of the year the ground in Iowa is frozen two to three feet deep. Since the ground was frozen, the bulldozer could not dig the hole needed for the slab. So it was decided they would use dynamite to loosen the soil. I guess Superintendent Bill Russell had this approved by the town fathers and the police and fire chef. 

Neil A. Lieb, left, and Blaine Bell worked on the Alta, Iowa, elevator in 1950.

Neil A. Lieb, left, and Blaine Bell worked on the Alta, Iowa, elevator in 1950.

Now, remember, Alta is a very small town, maybe 900 to 1000 residents then.

It was decided to use one-quarter stick of dynamite at a depth of 18 to 24 inches. The first charge was set off and it loosened about six to seven feet of dirt so they repeated this procedure every six to eight feet.

After setting off several charges, someone decided that if one-quarter stick worked so well, one-half stick would loosen a bigger area. So they used one-half  stick for the next charge. When it was set off, the explosion was so loud that Bill came charging out of his office to find why at about the same time as the woman across the street came out of her house screaming that her china cabinet had fallen over and all her good china had been broken. 

Within a few minutes the mayor, fire and police chiefs, and most of the town council members showed up. I guess Bill was very busy trying explain. Once he’d calmed everyone down, they all left.

That was the end of the dynamiting. The next day everyone was swinging a pick.

scan0007

 

 

 

 

 

Newly discovered photos show Tillotson’s big Alta, Iowa, grain elevator in 1950

Neil A. Lieb collection

Photos contributed by Neil A. Lieb

Of the slew of elevators Tillotson Construction Company put up in 1950, the one at Alta, Iowa, could have been considered a typical job, although the photo above shows that a sign company must have gone to work sinking anchors in the headhouse for the raised lettering. Built in the small Buena Vista County town that sits at the highest point on the Chicago-Illinois Railroad in its crossing of the Hawkeye State, the elevator followed Tillotson’s established Palmer Plan, with eight tanks of 18 feet in diameter rising to 115 feet in height. There was a 13-foot-wide driveway passing through the house in an opening 15 feet high under four split bins. An additional note about the Palmer plan says, “Extra dist @ Cupola and on Cleaner Floor,” and we take the abbreviation to mean distribution.

Formwork as the Alta Cooperative's elevator rises in a continuous pour. Note the driveway door.

Formwork as the Alta Cooperative’s elevator rises in a continuous pour. Note the driveway door.

Here is the full list of specifications:

Capacity per Plans (with Pack) 246,070 bushels

Capacity per foot of height 2640 bushels

Reinforced concrete/plans (Total) 2082 cubic yards

Plain concrete (hoppers) 49.6 cubic yards

Reinforcing steel/Plans (includes jack rods) 112.4 tons

Average steel per cubic yard of reinforced concrete 107/96 pounds

Steel & reinforced concrete itemized per plans

Below main slab 9419 lb/91 cu yd

Main slab 32,077 lb/272 cu yd

Drawform walls 142,070 lb/1424 cu yd

Work & driveway floor (including columns) 1485 lb/30 cu yd

Deep bin bottoms 6682 lb/47 cu yd

Overhead bin bottoms 7929 lb/40 cu yd

Bin roof (corner) 10150 lb/51 cu yd

Scale floor (complete) none

Cupola walls 9655 lb/88 cu yd

Distributor floor 1912 lb/10 cu yd

Cupola roof 2753 lb/15 cu yd

Miscellaneous (boot, leg, head, track sink, steps) 2560 lb/13 cu yd (a note here in the plans says “Cleaner floor”)

Elevator construction continued around the clock in a spectacle that must have awed the surrounding community.

Elevator construction continued around the clock in a spectacle that must have awed the community.

Construction details 

Main slab dimensions (Drive length first dimen.) 60 x 73.5 feet

Main slab area (actual outside on ground) 4101 sqare feet

Weight of reinforced (total) concrete (4000#/cu yd + steel) 4276 tons

Weight of plan concrete (hoppers 4000#/cu yd) 99 tons

Weight hopper fill sand (3000#/cu yd) 708 tons

Weight of grain (at 60# per bushel) 7380 tons

Weight of structural steel & machinery 20 tons

Gross weight loaded 12,483 tons

Bearing pressure 3.04 tons per sq ft

Main slab thickness 24 inches

Main slab steel (bent) 1 in diameter at 7 inch o.c.

Tank steel at bottom (round tanks) 5/8 inch diameter at 6 inch o.c.

Lineal feet of drawform walls 762 feet including exterior

Height of drawform walls 115 feet

Pit depth below main slab 15 feet 0 inches

Cupola dimensions (W x L x Ht.) 23 x 61.5 x 39 feet

Pulley centers 161 feet

Number of legs 1

Distributor floor Yes

Track sink Yes

Full basement Yes

Electrical room Yes

Driveway width–clear 13 feet

Dump grate size 3 – 9 x 6 feet

Columns under tanks size 20 inches square

Boot — leg & head Concrete

scan0010

Machinery Details 

Boot pulley 72 x 14 x 2 3/16 inches

Head pulley 72 x 14 x 3 15/16 inches

R.P.M. head pulley 42 rpm

Belt 14 inch 6 ply Calumet

Cups 12 x 6 inch at 8 inch o.c. Howell

Head drive 40 horsepower

Theoretical leg capacity (cup manufacturer rating) 8440 bushels per hour

Actual leg capacity (80 percent of theoretical) 6750 bushels per hour

The finished elevator, before the headhouse windows were installed and whitewashing was done.

The finished elevator, before whitewashing and installation of the headhouse windows.

Horsepower required for leg (based on above actual capacity plus 15 percent for motor) 33 hp

Man lift 1.5 horsepower electric

Load out scale Two 25 bushel Rich.

Load out spout 10.75 inch W.C.

Cupola spouting 10-inch diameter 14 gauge

Truck lift 7.5 horsepower Ehr

Dust collector system Fan → Dust bin

Driveway doors Two overhead rolling

Conveyor 14-inch R.H. 3 hp.

Picking up the thread on screw jacks unravels some elevator fundamentals

Charles H. Tillotson 4

By Ronald Ahrens

These plans found in the Tillotson Construction Company archives show details of jack screw assembly and formwork, which were essential in the continuous pour method of building elevators, and they contain the key to unlocking the story of how screw jacks came into use.

US855452-0

This key in is in the all-caps lettering “FOWELL SINKS JACK AND FORM.” A Web search reveals that “Fowell” is misspelled. Russell H. Folwell and William R. Sinks were Chicagoans who were granted patent 855452 for Apparatus for Raising Concrete Forms.

The patent application, filed with drawings (seen right) on Feb. 7, 1907, and awarded on June 4, 1907, stated,  “The invention relates to means for erecting concrete structures, and more particularly to apparatus for supporting and raising the forms or molds and the staging employed in building vertical concrete walls.”

The next year, the Canadian Stewart Company Ltd., of Montreal, started building the Grand Trunk Pacific Railway’s 3.5-million-bushel terminal elevator in Thunder Bay, Ont. Folwell was chief design engineer; Sinks supervised the construction. Work was finished in 1910.

US855452-1

Docomomo Canada-Ontario, which is part of Docomomo International, the organization that advocates for the documentation and conservation of buildings, sites, and neighborhoods of the Modern Movement, says this:

“Folwell and Sinks experimented with their lifting device for concrete forms … in 1903-04. By the time the Grand Trunk was constructed, they had perfected their jackscrew lifting device, increased the amount of steel reinforcing and developed mechanical means for delivering the wet concrete to the construction site.”

Additionally: “The device allowed for speed in construction and resulted in smooth wall surfaces.”

Charles H. Tillotson 5

The Official Gazette of the United States Patent Office, Volume 128, characterized the jack screw apparatus in a nine-point description.

Before perfecting the jack screw method, Sinks had been a proponent of tile construction for elevators, according to his grandson John Sinks, a genealogical researcher. He says his grandfather joined James Stewart & Company in 1905. For 108 years, between 1845 and 1953 (the company had come from Canada to the U.S. after the Civil War), Stewart was “one of North America’s most accomplished and longest-standing contractors,” the site of the National Building Museum tells us.  

Meanwhile, Nelson Machine Company, of Waukegan, Ill., appears to have been a manufacturer not only of screw jacks but also of pressing machines and irons.

Charles H. Tillotson 3

 

 

 

 

An unlikely connection to Tillotson’s elevator in Elkhart, Kansas

photo

By Ronald Ahrens

“Oh, look at the funny building!”

So might a visitor from Southern California say after driving 1300 miles to Elkhart, Kan., in order to celebrate a niece’s graduation.

As it turns out, that visitor keeps bar at my club.

I heard her say she had been to Kansas.photo-1

“Where in Kansas? Atchison? Topeka?”

“Oh, nowhere. Elkhart.”

(They went across the Oklahoma border to have some fun. She won’t send the photo of herself dancing on the pool table.)

“Really? My grandfather built the Elkhart grain elevator, starting in 1945. I hope you took a picture.”

As it turns out, as you see, she took two.

Some day, I’ll explain everything she wants to know about reinforced concrete construction, surface bearing load, elevator motor speed, and storage annexes.

Meantime, we have all this.

Thank you, Shirin.

 

 

Charles H. Tillotson straddled the divide between wood and concrete

Charles H. Tillotson

By Ronald Ahrens

My Great-grandfather Charles H. Tillotson may have been following his trade by instinct, but he opened the way for descendants to distinguish themselves in the business of elevator construction.

I know the Tillotsons saw themselves primarily as carpenters. My Uncle Charles J. Tillotson went to work as an apprentice carpenter for Tillotson Construction, which was founded after the death of his grandfather Charles. My Uncle Michael Tillotson learned carpentry on through the family business and worked as a carpenter throughout his career. When I helped him finish concrete sidewalks on a couple of side jobs in the 1970s, he preached a gospel that carpenters could do it all, whether it be concrete or painting. And in elevator construction, it was true.

Charles H. Tillotson was born in Brunswick, Mo., in 1880. He married Rose Brennan in Riverside, Iowa.

He and my Great-grandmother Rose had an apparently cozy life in Omaha with their three grown children, Joseph, Reginald, and Mary, all of whom became involved in elevator construction. Kristen Cart’s research has found the Tillotsons listed in the 1930 census. They lived at 624 N. 41st.

A 1936 city directory listed Charles H. as president of Van Ness Construction, a company that built mills and elevators. Joseph served as secretary-treasurer and Reginald was a foreman. Mary worked as a clerk-typist at the Federal Land Bank.

Charles_Tillotson_Obit__The_Nebraska_State_Journal__Lincoln__Nebr___19_June_1938

By then, Reginald was married to my grandmother, Margaret Irene McDunn Tillotson. Their firstborn Charles J., had arrived in 1935, followed the next year by my mother, Mary Catherine.

Uncle Tim Tillotson, the middle of their three sons between Charles J. and Michael (who was born in a home-built house trailer at a Smith Center, Kan., job site), says a story exchanged among the uncles was that Great-grandfather Charles H. would tell Reginald, “Put out that cigarette,” when they were working on jobs. The danger of fire was constant. How ironic, then, that Charles H. held a cigarette for his portrait.

After the death of paterfamilias Charles H., the Tillotson Construction Company was formed by Reginald, Joseph, and Mary. We would love to learn more about how this proceeded.

Meanwhile, the transition to slip-formed concrete construction was under way, with the Tillotsons’ carpentry skills being readily applied to the formwork.

Wrecking out details are provided in drawings from Tillotson records

Charles H. Tillotson

By Ronald Ahrens

The papers we received from my Uncle Tim Tillotson included not only the record of Tillotson Construction Company’s building activities, but also these pages showing details of building a wrecking-out platform as well as jack rod assemblies and formwork details. Page two is dated November 12, 1954.

A wrecking-out platform was needed as workers disassembled the formwork on the inside of the completed elevator.

Charles H. Tillotson 1

Uncle Charles Tillotson has previously written about his close call when cable clamps failed.

In that post he described a wrecking-out platform this way:

The final scaffold then becomes a square platform suspended in a round tank.

The void on each side of the scaffold is used for lowering or throwing the wood material into the tank’s dark abyss. After all the overhead wrecking has been accomplished, another team gains access to the tank’s bottom via a manhole in the side of the tank at or near ground level.

Charles H. Tillotson 3

The drawings and details presented in the notes included here are invaluable. For example: The hole in the roof is formed with a one-quart motor oil can. (“Remove can & plug hole,” the addendum reminds.)

Charles H. Tillotson 5

The handwritten note in the upper right corner of the first page says, “I put my center needle beam under the manhole then it is easy to get plank on and easy to get on scaffold. If you think this helps O.K. other wise [illegible] to a goose going south.”

“I’ll pick it up when I catch him down about Galveston,” this section concludes.

Charles H. Tillotson 4

Another note is on the quality of timbers: “I’ve been using these for 20 years if you use 3 good 2 x 6 they work fine and save over the 3 x 6 & all that steel and all you have to do is cut the ones you use in the tanks and they will work in small bins.”

We look forward to readers’ comments on the pages.

Charles H. Tillotson 7